IA y gobernanza: los puntos esenciales del debate internacional

Qué se discute en la gobernanza internacional de la IA

La gobernanza internacional de la inteligencia artificial (IA) congrega a gobiernos, organizaciones internacionales, empresas, instituciones académicas y actores de la sociedad civil para establecer pautas, estándares y herramientas destinadas a orientar cómo se desarrolla y emplea esta tecnología. Las discusiones integran dimensiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se detallan los asuntos clave, ejemplos específicos y los mecanismos que distintos foros proponen o ya ponen en práctica.

Amenazas para la seguridad y la integridad

La atención dedicada a la seguridad abarca errores involuntarios, usos malintencionados y repercusiones estratégicas de gran alcance. Entre los aspectos esenciales se encuentran:

  • Riesgos sistémicos: la posibilidad de que modelos extremadamente avanzados se comporten de manera inesperada o superen los mecanismos de control, comprometiendo infraestructuras críticas.
  • Uso dual y militarización: la incorporación de IA en armamento, sistemas de vigilancia y operaciones de ciberataque. En debates de la ONU y del Convenio sobre Ciertas Armas Convencionales se analizan opciones para regular o incluso vetar sistemas de armas totalmente autónomos.
  • Reducción del riesgo por diseño: estrategias como evaluaciones adversarias, auditorías de seguridad y la exigencia de análisis de riesgo previos a cualquier implementación.

Ejemplo: en el ámbito multilateral se discute la creación de normas vinculantes sobre SALA (sistemas de armas letales autónomas) y procedimientos de verificación para evitar proliferación.

Derechos humanos, privacidad y vigilancia

La IA genera desafíos para los derechos civiles y las libertades públicas:

  • Reconocimiento facial y vigilancia masiva: posible debilitamiento de la privacidad y aparición de sesgos. Diversos países y la Unión Europea analizan imponer límites o pausas a su implementación a gran escala.
  • Protección de datos: gestión responsable de grandes conjuntos de información para entrenar modelos, junto con aspectos de consentimiento, reducción de datos y procesos de anonimización.
  • Libertad de expresión e información: sistemas de moderación automatizada, creación de contenido engañoso y deepfakes que pueden influir en dinámicas democráticas.

Caso: campañas de desinformación potenciadas por generación automática de contenido han llevado a debates en foros electorales y a propuestas para obligaciones de transparencia sobre el uso de sistemas generativos en campañas.

Equidad, no discriminación y inclusión

Los modelos pueden reflejar o incluso intensificar sesgos existentes cuando los datos de entrenamiento no resultan suficientemente representativos:

  • Discriminación algorítmica: revisiones independientes, indicadores de equidad y procedimientos de corrección.
  • Acceso y desigualdad global: posibilidad de que la capacidad tecnológica se concentre en unas pocas naciones o corporaciones; urgencia de impulsar la transferencia tecnológica y la cooperación para fortalecer el desarrollo local.

Dato y ejemplo: estudios han mostrado que modelos entrenados con datos sesgados dan peores resultados para grupos subrepresentados; por ello iniciativas como evaluaciones de impacto social y requisitos de testeo público son cada vez más solicitadas.

Transparencia, explicabilidad y trazabilidad

Los reguladores discuten cómo garantizar que sistemas complejos sean comprensibles y auditables:

  • Obligaciones de transparencia: informar cuando una decisión automatizada afecta a una persona, publicar documentación técnica (fichas del modelo, orígenes de datos) y facilitar mecanismos de recurso.
  • Explicabilidad: niveles adecuados de explicación técnica para distintos públicos (usuario final, regulador, tribunal).
  • Trazabilidad y registro: bitácoras de entrenamiento y despliegue para permitir auditorías posteriores.

Ejemplo: la propuesta legislativa de la Unión Europea clasifica sistemas según riesgo y exige documentación detallada para los considerados de alto riesgo.

Responsabilidad jurídica y cumplimiento

La cuestión de cómo asignar la responsabilidad por daños ocasionados por sistemas de IA se ha convertido en un punto clave:

  • Regímenes de responsabilidad: se discute si debe recaer en el desarrollador, el proveedor, el integrador o el usuario final.
  • Certificación y conformidad: incluyen esquemas de certificación previa, evaluaciones independientes y posibles sanciones en caso de incumplimiento.
  • Reparación a las víctimas: se plantean vías ágiles para ofrecer compensación y soluciones de remediación.

Datos normativos: la propuesta de la UE contempla sanciones proporcionales a la gravedad, que incluyen multas significativas para incumplimientos en sistemas de alto riesgo.

Propiedad intelectual y acceso a datos

El uso de contenidos destinados al entrenamiento de modelos ha provocado fricciones entre la creación, la reproducción y el aprendizaje automático:

  • Derechos de autor y recopilación de datos: disputas legales y demandas de precisión acerca de si el proceso de entrenamiento representa un uso permitido o necesita una licencia formal.
  • Modelos y datos como bienes estratégicos: discusiones sobre la conveniencia de imponer licencias obligatorias, habilitar el intercambio de modelos en repositorios abiertos o limitar su exportación.

Caso: varios litigios recientes en distintos países cuestionan la legalidad de entrenar modelos con contenidos protegidos, impulsando reformas legales y acuerdos entre sectores.

Economía, empleo y competencia

La IA es capaz de remodelar mercados, empleos y la organización empresarial:

  • Sustitución y creación de empleo: diversas investigaciones revelan impactos mixtos: ciertas labores se automatizan mientras otras reciben apoyo tecnológico, por lo que resultan esenciales las políticas activas de capacitación.
  • Concentración de mercado: existe la posibilidad de que surjan monopolios debido al dominio de datos y de modelos centrales, lo que impulsa el debate sobre competencia e interoperabilidad.
  • Impuestos y redistribución: se analizan esquemas de tributación sobre ganancias ligadas a la automatización, así como mecanismos para sostener la protección social y los programas de recualificación.
  • Sustentabilidad del entorno

    El impacto energético y material asociado al entrenamiento y funcionamiento de los modelos se encuentra sujeto a regulaciones y prácticas recomendadas:

    • Huella de carbono: la preparación de modelos de gran escala puede requerir un uso considerable de energía; se debaten métricas y posibles límites.
    • Optimización y transparencia energética: adopción de sistemas de eficiencia, divulgación del consumo y transición hacia infraestructuras alimentadas con fuentes renovables.

    Estudio relevante: investigaciones han mostrado que el entrenamiento intensivo de modelos de lenguaje puede generar emisiones equivalentes a decenas o cientos de toneladas de CO2 si no se optimiza el proceso.

    Normas técnicas, estándares y interoperabilidad

    La adopción de estándares promueve mayor seguridad, confianza y dinamiza el comercio:

    • Marco de normalización: elaboración de estándares técnicos internacionales que abordan la solidez, las interfaces y los formatos de datos.
    • Interoperabilidad: asegurar que distintos sistemas puedan colaborar manteniendo niveles adecuados de seguridad y privacidad.
    • Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y diversos foros regionales intervienen en la coordinación y armonización regulatoria.

    Ejemplo: la OCDE elaboró una serie de principios sobre la IA que se han convertido en una guía para numerosas políticas públicas.

    Procesos de verificación, observancia y coordinación multilateral

    Sin mecanismos de verificación sólidos, las normas quedan como simples declaraciones:

    • Inspecciones y auditorías internacionales: se plantean observatorios multilaterales que monitoreen el cumplimiento y difundan información técnica.
    • Mecanismos de cooperación técnica: apoyo para naciones con menor capacidad, intercambio de buenas prácticas y recursos destinados a reforzar la gobernanza.
    • Sanciones y medidas comerciales: debate sobre restricciones a la exportación de tecnologías delicadas y acciones diplomáticas frente a eventuales incumplimientos.

    Caso: las limitaciones impuestas al comercio de semiconductores ilustran cómo la tecnología de IA puede transformarse en un asunto de política comercial y de seguridad.

    Instrumentos normativos y recursos aplicados

    Las respuestas normativas pueden adoptar formatos rígidos o enfoques más adaptables:

    • Regulación vinculante: normas nacionales o regionales que establecen deberes y contemplan sanciones (por ejemplo, una propuesta legislativa dentro de la Unión Europea).
    • Autorregulación y códigos de conducta: lineamientos promovidos por empresas o asociaciones que suelen ofrecer mayor rapidez, aunque con requisitos menos estrictos.
    • Herramientas de cumplimiento: análisis de impacto, auditorías externas, sellos de conformidad y espacios regulatorios de prueba destinados a evaluar nuevas políticas.

    Participación ciudadana y gobernanza democrática

    La legitimidad de las reglas depende de la inclusión:

    • Procesos participativos: consultas públicas, comités de ética y representación de comunidades afectadas.
    • Educación y alfabetización digital: para que la ciudadanía entienda riesgos y participe en decisiones.

    Ejemplo: en distintos países, varias iniciativas de consulta ciudadana han incidido en las exigencias de transparencia y en las restricciones aplicadas al empleo del reconocimiento facial.

    Relevantes presiones en el escenario geopolítico

    La búsqueda por liderar la IA conlleva riesgos de fragmentación:

    • Competencia tecnológica: estrategias de inversión, apoyos estatales y pactos que podrían originar ecosistemas tecnológicos separados.
    • Normas divergentes: marcos regulatorios distintos (desde posturas más estrictas hasta otras más flexibles) influyen en el comercio y en la colaboración global.

    Resultado: la gobernanza global busca equilibrar harmonización normativa con soberanía tecnológica.

    Acciones y referencias multilaterales

    Existen varias iniciativas que sirven de marco de referencia:

    • Principios de la OCDE: lineamientos orientadores sobre la IA confiable.
    • Recomendación de la UNESCO: marco ético para orientar políticas nacionales.
    • Propuestas regionales: la Unión Europea impulsa un reglamento centrado en riesgo y obligaciones de transparencia y seguridad.

    Estas iniciativas reflejan cómo se entrelazan directrices no obligatorias con propuestas legislativas específicas que progresan a distintos ritmos.

    La gobernanza internacional de la IA se configura como un sistema en constante evolución que ha de armonizar requerimientos técnicos, principios democráticos y contextos geopolíticos. Para que las respuestas resulten efectivas, se precisan marcos regulatorios definidos, procesos de verificación fiables y mecanismos

Por Claudia Morales